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Abstract 

Some cha rac t e r i s t i c s  of the var ia t ioas  cf t h e  Interplanetary 

magnetic f i e l d  and the  plasma veloci ty ,  observed during t h e  f l i g h t  

of Mariner 2 ,  are considered. 

from records of t h e  plasma velocity and t h e  th ree  vector components 

of t h e  f i e l d  are described. 

between p a i r s  of t h i s  set of four var iables  are described. 

var ia t ions t h a t  would be produced i n  the  plasma ve loc i ty  and t h e  

f i e l d  components by hydromagnetic waves are determined from a model 

of a uniform, per fec t ly  conducting, i sen t ropic ,  i d e a l  gas i n  a uniform 

magnetic f i e l d .  

a re  compared with those determined fromthis model. 

conditions, found t o  be necessary i n  t h e  model, are found t o  be 

s a t i s i f i e d  by the  observed var ia t ions:  

F i r s t ,  propert ies  of t h e  power spec t ra  

Next, t h e  propert ies  of t h e  cross spec t ra  

The 

The propert ies  of t h e  var ia t ions  determined empirically,  

The following 

Signif icant  coherences were usually present between a l l  

pa i r s  of measured variables.  

The phase differences between each p a i r  were independent 

of frequency. 

The r a t i o s  of the  power dens i t ies  f o r  each p a i r  were in- 

dependent of frequency . 
The values of these r a t i o s  f a l l  i n  the  ranges establ ished 

from the  model. 

The values of t h e  phase differences were e i ther  0' or  180'. 

ine phase differences charmed - by 180° when the d i rec t ion  of 

t he  interplanetary f i e l d  changed from inward toward the  sun 

t o  outward. 

"l. 
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The propert ies  of t h e  ionized gases and magnetic f i e l d s  observed 

i n  interplanetary space suggest that  the  medium would support t h e  

propagation of hydromagnetic waves through t h i s  region [ c.f .  A l f d n ,  

19501. In  Par t  1 [Coleman, 19661, some propert ies  of t h e  var ia t ions  

i n  t h e  magnetic f i e l d  and plasma ve loc i ty ,  observed during t h e  f l i g h t  

of Mariner 2,  were described. 

w i l l  be compared t o  t h e  propert ies  of var ia t ions  t h a t  would be pro- 

duced by hydromagnetic waves i n  a highly idea l ized  case. 

purpose of t h i s  paper i s  t o  show t h a t  most of t h e  properties of t he  

var ia t ions  i n  t h e  magnetic f i e l d  and plasma ve loc i ty  s a t i s f y  ce r t a in  

necessary conditions of hydromagnetic wave behavior. 

I n  t h i s  second p a r t ,  these proper t ies  

The primary 

The data t o  be discussed here were obtained with t h e  magnetaneter 

and ion spectrometer, o r  plasma probe, on board Mariner 2, which w a s  

launched i n  August, 1962. 

components of t h e  f i e l d  and of t he  ve loc i ty  of t h e  interplanetary 

plasma were obtained during the  four-month f l i g h t  of Mariner 2 between 

t h e  ea r th  and Venus. 

Measurements of t h ree  orthogonal vector 
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It v i l l  be ccnvenient t o  employ heliocentric,spherical ,polar coor- 

dinates w i t h  t h e  polar  axis coincident w i t h  t h e  sun's axis of ro ta t ion .  

Thus, the  pos i t ive  r d i rec t ion  is r ad ia i iy  outward frm, t h e  s m ,  t h e  

$ di rec t ion  is  p a r a l l e l  t o  t h e  solar equator ia l  plane and pos i t ive  i n  

t h e  d i rec t ion  of planetary motion, and t h e  8 di rec t ion  completes t h e  

usual right-handed system. In t h i s  system, t h e  quant i t ies  measured 

w i t h  the  magnetometer and plasma probe on board Mariner 2 are the  three 

vector components of the  magnetic f i e ld ,  Br, Be, and BO, and the plasma 

veloci ty  V = Vr. 

the  spacecraf t ,  ( r  , 9 ,  I#), are  shown i n  Figure 1. 

Unit vectors i n  the  r, 8 ,  and 4 di rec t ions  a t  t h e  pos i t ion  

Estimates of t he  auto spectra and cross spectra  from records of 

the  four measured var iables  have provided t h e  empirical results which are 

t o  be discussed here. 

f o r  hydromagnetic disturbances. 

and t h e  model. 

I n  t h e  next sect ion,  w e  w i l l  describe a model 

We w i l l  then compare t h e  observations 



. 
3 

The Model -- 
We wish t o  compare the observed var ia t ions  i n  t he  plasma ve loc i ty  

and t'ne magnetic f i e l d  wi%h tho variat ions t h a t  would be produced by 

hydromagnetic waves i n  t h e  interplanetary plasma. Following Thompson, [19621, 

with minor changes i n  notation, we w i l l  consider plane-wave per turbat ions i n  

t he  plasma displacement, d, moving through a uniform, pe r fec t ly  con- 

ducting, i sen t ropic ,  ideal gas i n  a uniform magnetic f i e ld  Bo f o r  t h e  

case i n  which the  gas is  moving with a bulk veloci ty  Vo. For such a system, 

i n  the  reference frame moving w i t h  ve loc i ty  Vo, t h e  l inear ized  equations are 

+ 

+ 

+ 

-+ 

+ + 
E + ( f / c )  x Bo = 0 

where P, i s  the  mean density and P is  t h e  density perturbation, 

V = V 

mean pressure and p is  the pressure perturbation, E is  the  e l e c t r i c  f ie ld ,  

y i s  the  r a t i o  of spec i f ic  heats f o r  t he  plasma, and c i s  the  veloci ty  

of l i g h t .  It has been assumed t h a t  Vo and Bo are constant and uniform. 

+ +  + + +  + 
+ v is  the veloci ty ,  B = B + b is the  magnetic f i e ld ,  po is  t h e  

0 0 
+ 

+ + 
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I n i t i a l l y  w e  w i l l  employ rectangular coordinates x y z. Since 
-+ 

the  magnetic f i e l d  Bo is  uniform, w e  assume 8 = B 

vector i n  t h e  pos i t ive  x direction. 

where is a uni t  
0 0 

Since t h e  system is symmetrical 

about the x axis ,  it w i l l  a l s o  be cor;-;enier.t tc! describe the  or ien ta t ion  

of an a rb i t r a ry  vector 2 i n  terms of the angles ea and 4,. 

'a 

of a on the  yz plane. 

and aL = a s i n  e . 

Here 
A A -1 -+ -1 + + 

= cos (a  x /a )  and = cos (al y/a,) where aL is the  projection 

+ 
Thus, a = al cos @ Y a and az = a1 s i n  

These quant i t ies  are depicted i n  Figure 2. a 
From Equations 4 and 5 ,  t o  t h e  first order i n  and G, 

Assuming t h a t  the displacement 8 and the  veloci ty  2 are s m a l l  so tha t  

i n  t h i s  l i n e a r  approximation & a t  = v,  in tegra t ion  of Equation 6 y ie lds  
-* 

This expression f ixes  the  relat ionship between the vector com- 

ponents of 'ij and d t ransverse t o  so. 
placement, it a l s o  f ixes  t h e  re la t ionship between % and 2. 
digressing b r i e f l y ,  we may consider t he  plane wave w i t h  propagation 

ve loc i ty  Uk r e l a t i v e  t o a  system moving w i t h  ve loc i ty  3 

veloc i ty  of t he  plasma. 

For a plane wave i n  the dis- 

Thus, 

A 

t h e  streaming 
0' 

In t h i s  case,  
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. 
Note t h a t  k i s  a u n i t  vector In  t h e  di rec t ion  of propagation. 

t he  frame of reference moving with t h e  plasma, 

L 

I n  

+ +  - t +  

d = d exp [(2ri/;X) (k r - Ut)] 
0 

and 

-+ -b 
v = a x / a t  = (-2ni/X) U d  

Also 

Then, from Equation 7 and Eqiisticns 10, 

(9) 

This re la t ionship  is  based only upon t h e  assumption t h a t  t h e  plasma is 

highly conducting, i.e., it i s  based upon Equations 4 and 5. 

addi t iona l  requirement t h a t  Equations 1 - 3 be satisifed, determines 

The 
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t h e  remaining proper t ies  of t h e  plane waves which may propagate through 

such a plasma. 

Returning now t o  Tli~iiipsoii's de*x?lopect, if 3 = 0 at t h e  time 

t = 0,  in tegra t ion  of Equation 1 yields 

-+ 
p + p o V * d = O  (12) 

Integrat ion of Equation 3 and subs t i tu t ion  f o r  p from Equation 12 y ie lds  

Combining Equations 2 and 13, w e  obtain 

Next, we denote the  Alfv6n speed by CA = Bo/(4np )'I2¶ the  SOund speed 

by Cs = (yp /p 

0 

= ( y l ~ T ) ~ / ~ ,  and a u n i t  vector i n  t h e  d i rec t ion  of 
0 0  

-+ 
Bo by e. Equation 14 may then be wr i t ten  

If we consider plane wave solut ions of t h e  form given by 
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Equation 88, t he  vector components of Equation 1 5  become 

2 A *  

where t h e  A are functions of e,  k ,  and C /C:, and i, j = x, y, 2. 
i j  S 

The physical significance of t h i s  set of equations is  more 

readi ly  seen if w e  consider the independent var iables  k d, e d, 
A A A  A 

A 
A +  + 

and e k x d ra ther  than the  vector components di of d. Then 

Equations 16 y ie ld  

From these equations, we see tha t  one root is t h e  velocity of an 

cos2 0 where = cos 8 The other two Al&n wave uA = cA 

roots  are the  roots  of the quadratic 

2 
k k' 

o r  
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:here t h e  wave with ve loc i ty  U+ i s  designated t h e  'fast '  wave and t h e  

wave with t h e  ve loc i ty  U i s  designated t h e  'slow' wave. - 
From Equation 19, w e  see t h a t  t h e  vectors  d, i ,  and 3 = Bo; are 

0 

co-planar. From Equation 17, w e  see t h a t  

= A,klldll 

where t h e  subscr ipts  I and 11 are used respectively t o  designate 

components t ransverse and p a r a l l e l  t o  so. 
s a t i s f i e d  by both f a s t  and slow waves. 

A i s  negative. 

This expression must be 

Note t h a t  A+ i s  pos i t ive  and 

- 
-+ + -. blnce iiieas~rernents nf v = ab/at and b are ava i lab le ,  w e  must 

-b 
consider t h e  behavior of v. 

have 

Since G i s  90' out of phase with d, we 

+ +  * +  v = v exp (2ni/A) [k r - U t  - A/41 
0 

-c 
with v p a r a l l e l  t o  bo. 

0 

Since and 3 a r e  constant, t h e  geometrical re la t ionships  
0 

between bo, i, and 3 hold a l so  f o r  Go, ;I, and 3 . Now from t h e  results 
0 0 

+ 
obtained thus far, w e  can obtain v i n  terms of v 09 'k3 cbk, 'A, and 

0 
+ 

C,, i . e . ,  we can determine t h e  d i rec t ion  of vo. Then, from Equation 11, 
" 
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.+ 
we can compute b . 

0 

For AlfvCn waves, vx = 0 and f is transverse t o  both 8 and 
0 0 

-+ 1;. Thus, if is parallel t o  8 Y may have any di rec t ion  trans- 
0’ 0 

verse t o  3 . If z ~ +  0, 2 must be transverse t o  both so and i .  We 

may a r b i t r a r i l y  se l ec t  t h e  phase of f so t h a t  

if x k. 

0 0 

is p a r a l l e l  t o  
0 

a 

Then 4, = $k + r/2. Thus, f o r  an Alfven wave 
0 

v = o  
X 

v = v cos ((Jk + n/2) 
Y 

For f a s t  and slow waves, 

v = v COS e 
X V 

v = v s i n  eV cos I# Y V 

v = v s i n  8 s i n  + z V V 

so from Equation 22, 

k,vl(cos $k cos (Jv + s i n  4k s i n  (JV)* = Aivxkx (26) 
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+ -  + 
low Bo, k, and v are co- 

0 

plaoar f o r  fast and slow waves, so t h a t  $v = or  I$k + A. 

so f o r  fast waves 0, = cbk,wnile f o r  Slov Y E W ~ S  $v = $k + II. 

Thus , 

t h e  coeff ic ient  of klvl i s  *l. But A+ is pos i t ive  and A - i s  negative, 

Then from Equation 25, 

o r  

These results may be summarized by t h e  following re la t ions :  

Alfven Waves 

bx = 0 

b = -V(B /u ) COS ek Cos (+k + 7/21 Y o A  

= -v ( B  /U 1 cos ek s i n  (+k + n/2) 
bZ o A  

Fast and Slow Waves 

= *v(B /U*) s i n  ek s i n  Bv bx 0 

(28) 
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b = v(B /Ui) cos ek cos I& s i n  ev 
Y 0 

= T V(B /i.i,j cos ak sin % sin 
bZ 0 “V 

where t h e  upper s igns correspond t o  fast waves, t h e  lower s igns 

correspond t o  slow waves, and 8 is given by Equation 27. 
V 

From t h i s  model, for each of t he  th ree  modes, given so, t h e  

d i rec t ion  of propagation defined by Bk and +,, t he  number density of 

t h e  protons, t h e  temperature, and the  magnitude of t h e  ve loc i ty  

per turbat ion v one may calculate  
0’ 0 0 

and t h e  or ien ta t ion  of f . 
During the f l i g h t ,  t h e  average value of Bo w a s  about 5y = 5 

gauss. The average number density of t he  protons, n near 

1 AU w a s  about 5 ~ m - ~ , a n d  t h e  average proton temperature w a s  1.7 1050K. 

[Neugebauer and Snyder; 1963, 19661. 

P’ 

6 Thus, CA = 5 10 cm/sec and 

6 Cs = 4 10 From Equation 10 and t h e  properties nf t h e  

d i f fe ren t  types of waves, we can determine the  amplitudes of t h e  

components of v and b i n  terms of the amplitude vo. 

vx, v,, bx, and b, are l i s t e d  i n  Table 1 f o r  each of the  th ree  modes 

and f o r  ek = 0, 15, 30, 45, 60, 75, and goo. 

cm/sec. 

+ + 
The quant i t ies  

The quant i t ies  t h a t  were measured are Br, Be, Bb, and V = 131. 
Since t h e  average radial streaming veloci ty  of t h e  plasma w a s  so much 

grea te r  than t h e  average value of t h e  veloci ty  perturbation as deter- 

mined from t h e  auto spectra  of V,  w e  may assume V = ’r * 

In  order t o  compare the  great ly  ideal ized model w i t h  t h e  obser- 

--- : A...” v a t r v l r o ,  it is mcessary t o  assume t h a t  t he  average interplanetary f ie ld ,  
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a = 
i j  

as w e l l  as t h e  plasma temperature and densi ty  are 

Then we may e s t ab l i sh  t h e  vector components of 5 and 

system, given Equations 27 and 28 w,d t h e  nr ien ta t ion  of 

piecewise uniform. 

i n  t h e  re$ 

cos B cos a - s i n  B cos a s i n  a 

s i n  B cos B 0 

- cos B s i n  a s i n  B s i n  a cos a 

A .. .. - -* - r Bor + 8 BOB + + Bog. 

04 

BO 

BL - (Bar o$ 

Suppose a = tan-'(-B /Bar) and f3 = tan-l(Bo,/B,), where 

- + B  )1/2. These angles are shown i n  Figure 1. Then from 

t h e  geometry of t h e  system, fo r  i = r, 8,  $, 

vi = 1 aij v j  
j 

and 

bi = 1 aij b j  
3 

(30) 

where j = x ,  y, z ,  t h e  v 's are given by Equations 24 o r  25, and t h e  

hi's are given by Equations 28 and 24, arid 

3 

O u r  analysis  of the  Mariner-2 data provides estimates of t h e  auto 

r ,  Br, Be, and B and estimates of spec t ra  of t he  measured variables V 

t h e  cross spec t ra  of a l l  t h e  possible pa i r s  of these  var iables .  From 

Equations 1 4  and 15  i n  terms of t h e  sca l a r  amplitude vo, w e  may deter- 

mine tne power P th& would a?pear i n  t h e  records of Vr, Br, Be, and 

4 
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B as a r e s u l t  of these ideal ized waves. We may a l so  determine t h e  

coherences and phase r e l a t ions  among these var iables  i n  t h e  idealized 
4 

case. "he power t h a t  would appear iii tr?e record of a measured 

var iab le ,  due t o  a s ingle  idea l ized  wave, i s  j u s t  t h e  average value of 

2 2 t h e  square of t h e  variable.  

i =  r,  8, 4.  Since t h e  terms a v and a b a re  a l l  r e l a t ed  by real 

Thus, P(vr) = (vr) and P(bi) = pi), 

i j  j i j  j 

mul t ip l ica t ive  f ac to r s ,  t he  cross spectra  of t h e  var iables  w i l l  y i e ld  

real  values. Thus, the  values of the  squares of t h e  coherences, R ,  

and phase differences f o r  each pa i r  of var iables  may be obtained from 

t h e  expressions 

f o r  i = j 
2 2  

R = ei bJ)! ei) @,) 

where k ,  j = r ,  8 ,  +. Here IRI is equivalent t o  the coherence squared 

and the  sign of R determines whether t h e  var iables  are i n  phase (+) or  

180' out of phase (-1. 

During the  f l i g h t ,  t he  preferred value of t h e  angle a w a s  about 

40'. 

ward from the  sun, t h e  preferred value of B 

the  preferred value of 8 was typica l ly  about 22'. 

ments of t he  absolute value of B 

and B 

8 = 0 and 25" in order tc es tab l i sh  the  e f f ec t s  of e r ro r s  i n  the  

During periods i n  which t h e  f i e l d  w a s  d i rected predominantly out- 

w a s  about 1.9~. Thus, 8 

However, t h e  measure- 

are less reliable than those of Br 8 

As a r e s u l t ,  values of P and R were computed f o r  t he  cases 
4 -  
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estimates of 8 .  Further, t he re  i s  evidence, t h e  r e l i a b i l i t y  of which 

is  s imi la r ly  questionable because of t h e  uncertainty i n  t h e  absolute 

values of B 

t h e  periods i n  which t h e  interplanetary f i e l d  w a s  d i rec ted  back 

toward the sun. 

which is simply r e l a t ed  t o  t h e  case i n  which a = 40°, B = -25'. 

a result, t h e  l a t t e r  case w a s  a l so  considered. 

t h a t  t h e  average value of 3 re i idned  positive during 
8' 0 

This i s  t h e  case i n  which a = 40 + 180°, B = 25', 

As 

It has been assumed t h a t  t he  waves are c i r cu la r ly  polarized. 
+ + 

Since 3 ,  k, and v are co-planar for  fast and slow waves, t h e  angle 

4k w i l l  be used t o  ind ica te  the or ien ta t ion  of 

zat ion of such a wave. 

p r i o r i  f o r  t he  waves t o  have a preferred plane 

a uniform system. I n  t h i s  case,  t he  values of 

There i s  no reason 8 

t h e  plane of polari-  

of po lar iza t ion  i n  

would be deter- 

mined by the propert ies  of the source of t he  disturbances. 

Vo, po, and p planetary space, non-uniformity of Bo, 

asymmetries i n  t h e  system which i n  t u r n  may constrain I$ 

allowed values. However, s ince w e  were approximating the  ac tua l  

system by a uniform one, we considered first the case i n  which the 

disturbances are produced by the superposition of a grea t  many plane 

waves w i t h  random phases and with the  or ien ta t ions  of the  planes of 

po lar iza t ion  d i s t r ibu ted  uniformly. In  other words, w e  considered t h e  

case of c i r cu la r ly  polarized waves. Thus, i n  taking t h e  average 

value of t h e  squares of the  variables and of t he  products of t h e  

d i f f e ren t  var iab les ,  w e  assumed t h a t ,  when averaged over a l l  t h e  present 

waves, 

In  in te r -  
+ +  

m a y  lead to 

k 

0' 

t o  ce r t a in  
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i.e.,  w e  assumed no coherence on the average between vi and v 

bi and b o r  v and b 

o r  3’ 
i # J, k,  J = x, y ,  2. 

j’ i 3’ 
Under these assumptions, t h e  values of P(vr) , and p( bi) for  

i = r, 0 ,  +,and t h e  values of R(v b . ) ,  for  i = r, 9, 4 ,  and R(bi, b 1, f o r  
r’ 1 J 

i # j ,  and f o r  i ,  j = r ,  8, 4 ,  may be computed i n  terms of vo f o r  any f i e l d  

or ientat ion and propagation direction. 

independent of t he  frequency f of t he  waves. 

i n  t he  frame of reference moving with t h e  plasma, is f = U/X. 

These values are, of course, 

This frequency, measured 

If w e  assume t h a t  a l l  t he  waves or ig ina te  within a f i n i t e  region 

of space centered a t  the  sun, on t h e  average, disturbances produced 

by waves propagating outward from t h e  s u i  will predminate.  

s ince  a point source i n  a uniform f i e l d  w i l l  produce a spherical ly  

However, 

spreading disturbance i n  the  fast mode and disturbances moving along 

t h e  f i e l d  l i n e s  i n  both directions i n  the  transverse and slow modes, 

w e  assume t h a t  waves moving back toward the  sun a l s o  contribute t o  

t h e  observed var ia t ions i n  v and b. 
-* -* + 
b and v fo r  a wave moving i n  the k d i rec t ion ,  back toward the  sun, 

-* -* The phase relat ionships  between 

d i f f e r s  by 180° from tha t  f o r  a wave moving outward. 

t r i b u t i o n  t o  b from inwardly t ravel ing waves w i l l  reduce t h e  coherences 

Thus, any con- 
-* 

indicated by I R I  , between v and b r i’ i = r ,  8 ,  $, but w i l l  not change 
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t h e  phase re la t ionships  s o  long as t h e  contribution from outwardly 

t rave l ing  waves predominates. 

R are those f o r  t h e  outwardiy trm-eliag v~ves; o r  kx = cos ek 2 0. 

The various cases fo r  which P and R have been computed may be 

summarized as follows: 

Accordingly, t h e  calculated values of 

Modes : Alfve'n, Fas t ,  Slow 

ek : 
B :  f25, 0' 

a: 40' 

Polar izat ion:  Circular  

0, 15, 30, 45, 60, 75, 90' 

B :  5 . 0 ~  
0 

-3 5 mp gm cm (m = 1 proton mass) 
P Po: 

T: 1050~ 

The r e s u l t s  are l i s t e d  i n  Table 1. 

For our purposes t h e  most s ign i f icant  parameters l i s t e d  i n  t h e  

t a b l e  are t h e  r a t i o s  P(bi)/P(vr), i = r ,  8, Cp, since these quan t i t i e s  

are d i r e c t l y  measurable from t h e  power spec t ra  of V and B i = r, e, 4. r i' 

Note t h a t  they are a l s o  independent of t h e  s igns of Bo and kx. 

important aspect of these  r e su l t s  is t h e  indicat ion tha t  v and b are 

180' out of phase regardless of which type of wave i s  considered, 

except f o r  fast waves when ek > 75'. For t h e  transverse and slow 

waves t h i s  r e s u l t  is  apparent from an inspection of Equations 1 4  and 

15, respectively. 

Another 

r r 

Of course, a l l  t h e  l i s t e d  phase relat ionships  a re  changed 
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by 160° when Bo i s  negative. 

In  considering t h e  phase re la t ionships ,  w e  have focused our 

a t ten t ion  on t h e  var iables  v and t %ecause the eauations ind ica te  

t h a t  t h e  phase re la t ionship  and the coherence a re  t h e  l e a s t  dependent 

upon t h e  s ign and magnitude of B i n  t h i s  case. 

r r 
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Obs ervat ions 

As mentioned previously, the var iables  measured by the  magnetaneter 

and plasma probe are 3r, I! , B 

discussed i n  Par t  1, amplitude d is t r ibu t ions  of these var iables  were 

examined. It w a s  found t h a t  t he  d is t r ibu t ions  were roughly Gaussian. 

Next, the  records were examined f o r  correlat ions between t h e  

and Vr. I n  t h e  analysis  of the data, 
0 0  

various pa i r s  of these variables.  

one of obtaining estimates of the cross spectra  of each p a i r  of 

var iables  fo r  several  sections of the record. It w a s  found t h a t  each 

p a i r  of var iables  exhibited s igni f icant  coherence on the  average, and 

t h a t  the coherence w a s  par t icu lar ly  strong f o r  t he  p a i r  Vr, Br. 

Further,  the phase differences were usually found t o  be e i t h e r  Oo o r  

f80° and roughly independent of frequency. 

cross spectra  provided strong evidence f o r  wave-like motions i n  t h e  

interplanetary plasma, ana ied to  t h ~  a ~ e r h ~ t  nore quant i ta t ive 

comparison, the  results of which w i l l  be summarized next. 

The procedure employed w a s  t he  usual 

These results from the  

We w i l l  be concerned with data obtained during four 10-day periods 

and two 6-day periods indicated i n  Table 2. 

se lec ted  i n  order t o  exclude the major reversals  of the polar i ty  of 

t h e  interplanetary field,  i.e., changes of the algebraic s ign of Bo, 

tha t  occurred twice during each period of so l a r  ro ta t ion  [Coleman, 

- Davis, Smith, and Jones, 19661. 

Part 1. 

was nearly always t h a t  l isted in  Table 2. 

These periods were 

These changes were a l so  discussed i n  

Thus, during each of these periods, the  polar i ty  of the  f i e l d  

We will consider the frequency range from 1 t o  50 cycles per day (cpd). 
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The l w e r  l i m i t  w a s  se lec ted  i n  order t o  l i m i t  t he  computer time 

required f o r  t he  analysis.  An upper l i m i t  of 100 cpd was  imposed by 

t he  sampling rate of the plasi~s -,rc5e. 

a l ias ing  between 50 and 100 cpd i n  some 

prompted t h e  se lec t ion  of 50 cpd as t h e  

I n  t he  frequency range 1 - 50 cpd, 

Indications of s ign i f icant  

of the  power spec t ra  of V r 
upper l i m i t .  

then, t he  auto spec t ra  of B r’ 
Be, BO, and Vr provided estimates of t h e  power dens i t ies  f o r  these  

var iables  as functions of t h e  frequency. As t he  first s t ep  i n  the  

comparison between t h e  measured properties of t he  var ia t ions i n  Br, 

b and v determined Be,  B and V and the  properties of b 

from t h e  model of ideal ized hydromagnetic waves, various r a t i o s  of 

t h e  spec t ra l  d e n s i t i e s  were computed as functions of the  frequency, 

f ,  fo r  the  s i x  sets of data. 

and P(B )/P(Vr) are plotted versus f i n  Figure 3. 

4’  r r’ be* $ 9  r 

The r a t i o s  P(Br)/P(Vr), P(Be)/P(Vr), 

O 
I n  the idea l  case, considered i n  the last sect im,  these ratios 

are independent of frequency, at least f o r  cases i n  which the  fre- 

quencies of the  waves, measured i n  the  reference frame moving with 

t h e  streaming veloci ty  of the  plasma, are smaller than t h e  proton gyro 

frequency which is  about 0.08 cps i n  a f i e l d  of s t rength 5y. 

empirical cases,  t h e  power-density ratios are evidently independent 

of frequency, s ince t h e  ratios p lo t ted  i n  Figure 3 show no apparent 

frequency dependence. 

I n  the  

I n  t h e  ideal case, the  values of these power density ratios f o r  

a par t icu lar  plane wave depend upon t h e  geometry of the  system and upon 

the field magnitude. Bo, t h e  temperature, T ,  and density,  po, of t h e  
-+ 
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g- 

values computed f o r  the  idea l  case, as described i n  t h e  preceding 

sect ion,  are a l s o  indicated oi; the right-hw-d s ide  of Figure 3. In  

t h e  empirical  cases,  t he  values of t he  power-density ratios were 

generally within o r  c lose t o  t h e  ranges determined f o r  t h e  i d e a l  

case. The var ia t ions  among the  empirical cases are probably due 

primarily t o  var ia t ions  i n  IB I ,Po, and T. 

For Alfven waves, t h e  values are independent of I Bol . The 

+ 
0 

Comparison of the measured values and t h e  theo re t i ca l  values of t h e  

power-density r a t i o s  a l so  indicates t h a t  waves i n  the  t ransverse and/or 

fast modes were present ,  s ince t h e  measured r a t i o s  are considerably 

g rea t e r  than the  r a t i o s  expected f o r  slow waves,except f o r  Ok near 

goo, but are generally within the ranges of t h e  r a t i o s  expected f o r  

t h e  other  two modes. This result does not imply t h a t  slow waves 

were absent but rather t h a t  A l f d n  and/or f a s t  waves were present and, 

therefore ,  contributed most t o  the  var ia t ions  In the  f i e ld .  

Evidence t h a t  the  observed f i e l d  var ia t ions  could not be produced 

by purely t ransverse waves w a s  presented i n  Par t  1, i n  which it w a s  

shown t h a t  t he  var ia t ions  i n  Bw, t h e  magnitude of t h e  vector com- 

ponent of t he  f i e l d  i n  t h e  direct ion of t he  idea l  s p i r a l  f i e l d ,  were 

of roughly t h e  same magnitude as t h e  var ia t ions  i n  t he  other  vector 

components. 

However, t o  t h i s  point ,  t h e  most s ign i f icant  r e s u l t s  of t h i s  

comparison are simply t h a t  t h e  measured values of the  power-density 

r a t i o s  are evidently independent of frequency and t h a t  these values are 
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i n  the  ranges calculated for t he  ideal ized waves using only t h e  

measured values of the  mean proton densi ty ,  t h e  mean f i e l d  s t rength,  

and the iiies prztnr? temperature. 

Having considered t h e  propert ies  of t h e  auto spec t ra  of t h e  

measured var iables  Br, Bo, BO, and Vr, l e t  us tu rn  t o  the  cross  

spectra  of various pa i r s  of these var iables .  

a p a i r  of var iables  provides estimates of I R I  , t h e  magnitude of t h e  

square of the coherence between the two time s e r i e s  corresponding t o  

t h e  two var iab les ,  as a function of frequency, and estimates of 

@, t he  difference i n  t h e  phase of the  predominant coherent components 

of t he  two var iab les ,  as a function of frequency. 

The cross spec t ra  of 

I n  e f fec t ing  the comparison between t h e  empirical  cases and 

the  idea l  case, t h e  quant i t ies  IRI and @, calculated f o r  pa i r s  of 

t h e  measured var iables  were compared, respect ively,  with IRI and 

t h e  algebraic  s ign of R calc-cilsted i s r  t h e  corresponding p a i r  of 

var iables  for t h e  ideal case,  as described i n  t h e  preceding sect ion.  

Thus, f o r  t h e  ideal case,  i f  R > 0,  @ = 0'. 

Also, for the  idea l  case, R i s  independent of frequency. 

If R c 0, @ = 180~. 

Cross spec t ra  were computed f o r  a l l  pa i r s  of the measured 

var iables  for a l l  s i x  periods of i n t e r e s t .  

t h e  square of t he  coherence f o r  t h e  p a i r  of var iables  V 

was grea ter  by f ac to r s  i n  the  range from 5 t o  8 than t h e  values of 

I RI f o r  any of t h e  other  pa i r s ,  although on the  average, a l l  p a i r s  

exhibi ted s ign i f i can t  coherences. Accordingly, only values of 

The values of IR(Vr, Br)l, 

and Br, r 
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IR(Vr,  B r ) l  and 4(Vr, Br) me reproduced i n  Table 2. 

all p a i r s  are given i n  Par t  1. 

Values f o r  

In  most cases,  t he  quant i ty  jR(Vr,  ar) f exkihited considerable 

frequency dependence over t h e  range 1 - 100 cpd, as shown i n  Figure 21 

of Part 1. 

value i s  su f f i c i en t  f o r  our purposes. Furthermore, t h e  quant i ty  

4 ( V r ,  Br) i s  roughly independent of frequency. 

values of IRI and 4 ,  taken over t h e  frequency range 1 - 50 cpd, are 

l i s t e d  i n  Table 2. 

However, i n  t h e  frequency range 1 - 50 cpd, t h e  average 

Thus, only average 

From Table 2, it is  apparent t h a t  t he  coherence of Vr and Br w a s  

r e l a t i v e l y  high and t h a t  these two var iables  were near ly  180° out of 

phase when the  average f i e l d  w a s  d i rected from t h e  sun (+ po la r i ty )  

and nearly i n  phase when t h e  average f i e l d  w a s  d i rec ted  toward the  

sun ( -  po la r i ty ) .  

described i n  Par t  1. The apparent differences i n  @ of -13' tz -15' 

from 0' t o  180° i s  a phase e f fo r  r e su l t i ng  from t h e  manner i n  which 

t h e  time w a s  assigned t o  t he  measurements of Vr,  r a the r  than t h e  

result of any real phase differences.  

The method by which t h i s  po la r i ty  w a s  reckoned is  

Phase differences of 180° and 0' f o r  pos i t ive  and negative 

p o l a r i t i e s ,  respect ively,  are consistent with t h e  results of t h e  

computations i n  t h e  preceding sect ion f o r  t h e  ideal case i n  which the  

waves propagate primarily outward, i . e . ,  propagate with kx 1.0. 

mentioned previously, we might expect t h e  coherences t o  be w e l l  below 

t h e  values f o r  the  i d e a l  waves because of the  e f f e c t s  of waves propa- 

gat ing back toward the sa, i.e3, propagating w i t h  ky < 0. 

As 

.. 
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I n  the  foregoing, various propert ies  of simultaneous var ia t ions  

observed i n  t h e  interplanetary magnetic f i e ld  md i n  t he  ve loc i ty  of 

t h e  solar-wind plasma were campared t o  the  propert ies  of hydromagnetic 

waves as determined from an ideal ized model. 

The qua l i t a t ive  study of t h e  observed var ia t ions  yielded t h e  

following results over the  frequency range, 1 - 50 cpd: 

Signif icant  coherences were usually exhibited between a l l  

pa i r s  o f t h e  set of var iables  Br, Be, B$), and Vr' 

The coherences generally varied w i t h  frequency. For t h e  

cases i n  which t h e  values were consis tent ly  s ign i f i can t ,  

t he  coherences decreased with increasing frequency. 

The phase differences of t h e  predominant coherent com- 

ponents i n  each p a i r  of var iables  were roughly independent 

of frequency. 

The r a t i o s  of t h e  power dens i t ies  f o r  each p a i r  of var iables  

were s imi la r ly  independent of frequency. 

Comparison w i t h  the  propert ies  of t h e  ideal ized waves showed 

t h a t  t h e  first,  t h i r d ,  and fourth propert ies  l i s t e d  above would be 

expected for  any complex group of waves as long as the  amplitudes of 

t h e  waves i n  one mode r e l a t i v e  t o  t h e  amplitudes of t he  waves i n  each 

of the other two modes a re  roughly the  same at any of t he  frequencies 

studied. 

example, t he  waves t h a t  were encountered were t o  include two such 

The second property l i s t e d  above would be expected i f ,  f o r  
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groups cf waves, each with a d i f fe ren t  power spectrum and a d i f f e ren t  

phase relat ionship.  

The quant i ta t ive  stu&y of t k e  &served var ia t ions  yielded the 

following results: 

( 5 )  Most of t h e  measured values of t h e  power-density r a t i o s ,  

P(Bi)/P(Vr), i = r ,  8, +, were i n  the  ranges of t he  values 

t h a t  were calculated fo r  t h e  i d e a l  waves. The measured 

values were generally close t o  t h e  maxima of these calcu- 

lated ranges. 

The measured values of t he  power-density r a t i o s ,  given i n  

Table 2 ,  show t h a t  P(Be)/P(Vr) > P(B+)/P(Vr) > P(Br)/P(Vr). 

The results calculated f o r  t h e  i d e a l  waves, l i s t e d  i n  

Table 1, show t h a t  t h i s  re la t ionship  would be expected f o r  

all Alfven waves and fo r  fast waves w i t h  8 

(6) 

< 45'. k 

( 7 )  The phase differences of V aild 2 meastlred by t h e i r  P r' 

cross spec t ra ,  were e i the r  0' or  180'. 

w a s  observed when the s p i r a l  interplanetary f i e ld  w a s  

d i rected toward the  sun. The value of 180' w a s  observed 

when the  f i e l d  was directed away from the sun. 

The measured values of t he  coherences, l isted i n  Table 2, 

were found t o  be considerably smaller than the  values 

calculated f o r  t he  idea l  waves and l i s t e d  i n  Table 1. 

The value of 0' 

(8) 

The f i f t h  and s ix th  properties l i s t e d  above would be expected 

f o r  Alfve'n and/or fast waves. The seventh property would be expected 
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i f  waves propagating outwardly along t h e  f i e l d  predominated. The 

two groups, mentioned i n  connection with the frequency dependence 

of t h e  coherence, may be inward and outwar~L"u-ad vwes v i t h  

somewhat d i f f e ren t  power spectra.  

of t h i s  frequency dependence would ind ica te  t h a t  t h e  outward-bound 

waves were somewhat less predominant at the  higher frequencies. 

"he presence of two such groups, i .e.,  inward and outward-bound waves, 

would a l s o  account f o r  t h e  eighth property l i s t e d  above. 

In  t h i s  case, the  propert ies  

We remarked above tha t  fast waves and/or AlfvCn waves would 

produce the measured power-density r a t i o s .  

t h a t  Alfven waves alone could not produce the  observed var ia t ions 

because the  var ia t ions  along 3 were of about t h e  same magnitudes 

as those i n  t h e  t ransverse direct ions.  

the  f i e ld  var ia t ions  were produced primarily e i t h e r  by fast waves 

and Alfven waves o r  by fast  waves alone. 

In  Par t  1, it w a s  shown 

0 

Thus, it would appear t h a t  

These r e s u l t s  do not indicate whether Alfv6n waves were de f in i t e ly  

present.  

present ,  but undetected due t o  the presence of waves i n  one o r  both 

of the other  modes. Since the fast and slow modes are coupled i n  

t h e  ideal case,  and s ince the  AlArdn mode is  not l i k e l y  t o  be 

s t r i c t l y  decoupled i n  the  interplanetary medium, it i s  probable 

t h a t  all t h ree  types of waves were encountered. 

Further, they do not indicate  whether s l o w  waves were 
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It shouid be mentioned also t h a t  the  magnetic f i e l d  measure- 

ments suggest t h a t  qua l i t a t ive ly  similar var ia t ions  occur i n  the  

range of frequencies up t o  at  least 500 cp2. 

ments provided information i n  t h e  frequency range 0 - 1000 cpd. 

The data  ind ica te  t h a t  the  properties of t h e  f i e l d  var ia t ions  i n  t h e  

range 50 - 500 cpd are  the  same as those i n  t h e  range 1 - 50 cpd, 

except t h a t  t h e  absolute power densi t ies  decrease with increasing 

frequency, reaching t h e  noise leve l  of the magnetometer a t  about 500 cpd. 

% ~ s e  f i e l d  measure- 

The auto spectra  of t h e  f i e l d  var iables  were described i n  Par t  1. 

A t  frequencies near 500 cpd, t h e  spectra ,  i n  general ,  showed a fre- 

quency dependence somewhat weaker than f'*. 

would be expected near tfieproton cyclotron frequency of 0.08 cps. 

For Alfv6n waves, t h i s  cutoff could appear i n  our computed spec t ra  

a t  frequencies up t o  about 1 cps due t o  Doppler sh i f t s  (compare 

Equations 8 and 8a). There i s  some evidence from E O - 1  [Bolzeri 

McLeod, and Smith, 19661 t h a t  a steepening of t he  spectra  of t he  

f i e l d  var iables  t o  a dependence stronger than f-2 occurs near 

O f  course, a cutoff 

0.2 cps. 

There are several  likely sources for  waves i n  the  interplanetary 

It has been suggested t h a t  t h e  sun's chromosphere and corona medium. 

r e s u l t  from the  convective motion i n  the  granulation zone of t h e  

photosphere [LeiRhton, 19631. 

motion are believed t o  t r a v e l  upward o r  outward, through the  atmosphere, 

t ransport ing suf f ic ien t  energy t o  provide heating of t he  upper layers .  

There is  evidence t h a t  the p e r i d s  of these waves a re  about 6 minutes, 

Acoustic waves generated by t h i s  
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which is roughly the  =earA l i f e t h e  of t h e  granulation pat tern.  

preferred spacing of t he  c e l l s  i n  the  pa t te rn  is  about 2000 km. 

The 

There is another pa t t e rn  or convective flow i n  t ne  sun which 

corresponds t o  the  more recent ly  detected supergranulation. 

coarser supergranulation is  physically s i m i l a r  t o  the  f i n e r  granu- 

l a t i on ,  but behaves independently. 

granulation pa t te rn  i s  evidently about 10 hours. 

of these l a rge r  c e l l s  is about 35,000 km. 

The 

The mean lifetime of t h e  super- 

The preferred spacing 

Waves produced by these two pa t te rns  of convective motion may 

produce disturbances i n  the  interplanetary medium. 

we might expect var ia t ions which would be modulated with periods of 

about 10 hours and less, w i t h  t he  shor te r  periods due t o  harmonics, 

and var ia t ions  w i t h  periods of 6 minutes and less. 

t a t i o n  would, of course, complicate the frequency spectrum tha t  

would be observed at  a fixed point. 

t o  t h e  granulation pattern,one would expect components w i t h  periods 

of 17 minutes and shor te r  and from the  waves corresponding t o  the  

supergranulation pa t te rn ,  one would expect components w i t h  periods of 

4 hours and shor te r .  

In  t h i s  case,  

The sun's ro- 

Thus, from the waves corresponding 

In a discussion of  interplanetary dynamical processes, Parker, 

[1963] described several  other  l i k e l y  sources f o r  disturbances i n  t h e  

interplanetary medium. 

t r ave l ing  at d i f fe ren t  ve loc i t ies  w i l l  occur s ince t h e  coronal tempera- 

ture var ies  wi th  t i m e  and posit ion.  

Interact ions between streams of solar plasma 

Such interact ions may produce 
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disturbances t rave l ing  i n  both direct ions from the  boundaries 

between the  streams. Further, several  types of instabilities are 

predicted f o r  t he  case i n  which the  solm wind is composed of 

many streams i n  each of which t h e  plasma is i n  a d i f f e ren t  state. 

In  addi t ion,  the solar-wind model of Parker 119581 f o r  t he  

coronal expansion requires t h a t  the outwardly flowing plasma 

expand anisotropical ly .  In  the  absence of co l l i s ions  i n  t h e  

plasma, t h i s  is expected t o  generate plasma i n s t a b i l i t i e s  t h a t  

could result i n  wave-like phenomena. 
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Table Captions 

Table 1. Results of calculations of power-density ra t ios ,  coherences 

squared, and phase differences f o r  ideal ized hydromagnetic waves. I n  

~ e s e  edcz~at ims ,  B = 5.10-5 gauss, n = 5 protons/cm 3 , T = 10 50 K. 
0 

The phase difference,  @, between a p a i r  of var iables  is given by the 

s ign of R, the square of the coherence, f o r  the pa i r .  Thus, the  p a i r  

is  i n  phase f o r  R > 0 and 180' out of phase f o r  R < 0. 

signs are given, the upper s ign corresponds t o  the  case of 6 = 25' 

and the lower s ign is f o r  6 = -25'. 

variable  is  just the ,average power that would appear i n  a record of 

the variable t h a t  w a s  one period of o s c i l l a t i o n  i n  length. I n  these 

calculations,  it was assumed tha t  the var ia t ions would be produced by 

a superposition of randomly polarized waves. 

Where two 

The quantity P f o r  a pa r t i cu la r  

For transverse waves the 

range of ek indicated by 'all' is  0 s ek s 90'. The r e s u l t s  given 

here are f o r  the case I;: Bo > 0. 

differences change by 180". 

4 
For 2 so c 0, all phase 

Table 2. Ratios of the power densi t ies ,  coherences squared, and 

phase differences obtained from s i x  s e t s  of auto and cross spec t ra  

fo r  the measured variables B r, Be, Bp, and Vr. 

P, the coherences squared, R, and the phase differences,  

averages taken over the frequency range 1-50 cycles per day. 

quantity R- 

ment of @, i.e., f o r  a measurement in which the rms uncertainty of 

@ i s  45'. 

directed outward from the sun; a (-) po la r i ty  i s  assigned i f  it 

was inward toward the sun. 

The power dens i t ies ,  

@, are 

The 

i s  the value of R required f o r  a s igni f icant  measure- 

A (t) polar i ty  is assigned i f  the average f i e l d  was 



Table 1 

V 
8 *k 

Slow Mode 

0 0.0 
15 -15.0 
30 -17 5 
45 -15 .o 
60 -10.4 
75 - 5.9 
90 0.0 

0 90.0 
15 75.0 
30 72.5 
45 75.0 
60 79.6 
75 84.3 
90 90.0 

Transverse %de 

Au. 90.0 

V V 
ox 01 'b 

v cm/sec 
0 

1.00 0.00 ----- 
0.97 0.26 103 5 
0.95 0.30 120.0 
0.97 0.26 135.0 
0.98 0.18 150.0 
0.99 0.10 165 .o 
1.00 0.00 ----- 

0.00 1.00 -90.0 
0.26 0.97 -74.8 
0.30 0.95 -60.0 
0.26 0.97 -45.0 
0.18 0.98 -29.6 
0.10 0.99 -15 0 
0.00 1.00 0.0 

0.00 1.00 -9.0 

b 
box 01 

v gauss 
0 

0.00 0.00 
0.10 0.36 
0.26 0.45 
0.41 0.41 
0.52 0.30 
0.60 0.16 

0.00 
0.25 
0.44 
0.60 
0.72 
0.79 
0.82 

0.00 

1.00 
0.92 
0.76 
0.60 
0.41 
0.21 
0.00 

i .W 



'k 

Table 1 (cont *a) 

2 -2 2 2%. 1 0 ~ 3  gauss an sec 

Slow Mode, 8 = 0' 

0 0.00 
15 0.58 
30 1.48 
45 2.35 
60 3-12 
75 3.65 
90 3.84 

Slow Mode, 8 = i25O 

0 0.00 
15 0.83 
30 1.84 
45 2.64 
60 3 -28 
75 3-70 
90 3 -84 

F a s t  Mode, 8 = 0' 

0 10.50 
15 9-08 - 70 9.74 
45 12.20 
60 15 -30 
75 17.90 
90 18.90 

F a s t  Mode, $ = i25' 

0 10.50 
15 9-08 
30 8.78 
45 9.69 
60 10.90 
75 12.00 
90 12.40 

0.00 
1.17 
1.83 
1.48 
0.79 
0.22 
0.00 

0.00 
1.19 
2.06 
2.10 
1.82 
1.54 
1.42 

25.40 
18.30 
12.10 
7.71 
3.90 
1.07 
0.00 

16.60 
l3.10 
9-84 
7-70 
6.08 
4.98 
4.59 

Transverse Mod.e, 6 P 0' 

All 10.00 25 .oo 
Transverse Mode, $ = 425' 

All 7-70 16.00 

0.00 
0.76 
1.58 
2.10 
2.43 
2.64 
2.71 

0.00 
1.00 
1- 95 
2.39 
2.59 
2.68 
2.71 

14.90 
u. 80 
10.40 
i C . 3  
12.00 
2 - 9 0  
13-30 

13.40 
ll.00 
9.28 
8.75 
8.66 
8.69 
8.71 

15.10 

10.80 

0.00 
-0.55 
-0.82 
-0 93 
-0.9 
-0.99 
-1.00 

0.00 
-0.52 
-0.78 
-0.91 
-0.97 
-0.99 
-1.00 

-1.00 
-0.66 
-0 30 
-0.11 
-0.02 
0.00 
0.00 

-1.00 
-0.76 
-0.48 
-0.28 
-0.15 
-0.06 
0.00 

-1.00 

-LOG 

Wr, Brj 

Deg . 

--- 
180° 
180° 
b00 
b00 
180° 
b00 

--- 
180' 
180: 

180: 

180 

180 

180° 

180: 
1800 
180 
180° 
%0° --- --- 

180' 
180° 
180° 
180' 

180° 
180' 

--- 

180° 

.I 0-0 
A W  
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Figure Captions 

Figure la. 

e ,  and I+. 

Spherical  polar  coordinate system with coordinates r, 

Orthogonal un i t  vectors r, 8,  and I+ are shown at  t h e  point 
L L  L 

P, t h e  locat ion of t h e  spacecraft. For s implif icat ion,  t h e  spec ia l  

case f o r  t he  point P ( r ,  8 = Oo, I+) i s  shown along with t h e  magnetic 

l i n e  of force f o r  t he  i d e a l  s p i r a l  f i e l d  [Parker, 19581 i n  the s o l a r  

equator ia l  plane and passing through P. 

Figure lb. 

di rec t ions  at point P f o r  t h e  special  case i n  which 3 
rt$ plane. 

Orientation of the  x y z axes r e l a t i v e  t o  t h e  r e I$ 

i s  i n  the  
0 

Figure IC. 

di rec t ions  at a point P f o r  the general  case. 

Orientation of t h e  x y z axes r e l a t i v e  t o  the  r 8 Q, 

-+ 
Figure 2. Orientation of an a rb i t r a ry  vector  a i n  the  x y z system. 

Figure 3. 

t h e  auto spectrum of each vector f i e l d  component t o  the  power density i n  

t h e  auto spectrum of t h e  r ad ia l  component of the  plasma ve loc i ty  is  

p lo t t ed  versus frequency f o r  s i x  sets of auto spectra.  

allowed ranges for  each r a t i o  are a l s o  indicated on the right-hand side 

of the  corresponding p io i .  

propagation, fast ( F ) ,  slow (S), and Alfv6n o r  t ransverse (T). 

Ratios of power densi t ies .  The r a t i o s  of t he  power density i n  

The t heo re t i ca l ly  

Sepmate r a g e s  are shown f o r  each mode of 
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